Roy and Niels

Roy and Niels
Showing posts with label medical physics. Show all posts
Showing posts with label medical physics. Show all posts

Thursday, March 6, 2014

A Stopping Power App for Android



We (as in APTG) have just released the dE/dx Android app on Google Play!

Screnshot of the dE/dx app, ver. 1.0 from my LG Nexus 4 phone.

The app is written by student Casper Cristensen in collaboration with the Dept. of Physics and Astronomy and the School of Engineering at Aarhus University. The app is based on the stopping power library libdEdx-1.2.1  which was presented in an earlier blog entry here.

The cool thing about the app is that all tables are stored locally on phone (this is why it needs access to USB memory), so no network access is necessary - useful if you want to look up stopping power while working in a shielded area with no network.

In summary the features are:
  • ICRU 49 and ICRU 73 (revised version) electronic stopping power tables
  • MSTAR tables provided by Helmut Paul
  • BETHE_EXT00, a generic algorithm as used in SHIELD-HIT12A. Applicable for any ion to all 278 ICRU compounds (beware, use with care, can be off at lower energies), .
  • no network access needed after installation
  • calculation of CSDA range of particle in target material
  • inverse CSDA lookups possible (if you need to figure out what specific energy is needed to produce a certain range in a material.

Disclaimer: of course we do not claim correct reproduction of any of the data, use at own responsibility!

Thanks to:

  • Casper Christensen (programming this app)
  • Jesper Rosholm Tørresø (being Casper's supervisor and our contact person to the engineering school)
  • Jakob Toftegaard (writing most of the libdEdx backend and dedx.au.dk webpage)


Enjoy! :-)

Wednesday, November 21, 2012

SHIELD-HIT12A demo version released

Here is a little sneak-preview of the upcoming release of SHIELD-HIT12A.

Pimp my Niva... (artist's impression of SHIELD-HIT12A).

SHIELD-HIT12A is a Monte Carlo particle transport code capable of transporting heavy ions through arbitrary media. The -A fork was made in 2010 from SHIELD-HIT08, and since then we have added plenty of new features, solved many bugs, increased calculation speed and optimized the nuclear models to new data on carbon-12 fragmentation.

A free demo version where the random seed and statistics are fixed to 10.000 particles can be downloaded from the project development page. There are builds for Linux and Windows systems (32- and 64 bit). It is a beta-release, but we would like to bring this demo version to a broader community, and thereby hopefully also fix some more bugs before we release the full version.

The new features in SHIELD-HIT12A are:
  • New simplified material and beam parameter parser in free format and extensible without breaking downward compability.
  • Including 279 ICRU default materials and elements, it has never been so easy to specify a material.
  • New beam model: divergence and focus distance can now be specified (thanks to Uli Weber from Marburg).
  • Arbitrary starting beam directions now possible.
  • New routine for Vavilov straggling, 5-6 times faster than the original one by Rotondi and Montagna which was used in Geant3.21. In total, this alone means a speed improvement of roughly 30-40%.
  • Ripple filter has two modes of operation, Monte Carlo type or Modulus type.
  • Logarithmic energy binning in SPC files for TRiP
  • Full howto for generating DDD files for TRiP
  • Now only three input files are needed to setup a run.
  • Improved documentation.
  • Scoring by zones using detect.dat (complementary to Cartesian mesh and cylindrical scoring)
  • Alanine response model included, so SHIELD-HIT12A can directly calculate the dose equivalent response in alanine.
  • Flat circular and square beams can be defined
  • Neutron data for natural Argon was added (needed for detailed simulations of air)
  • Another ton of bug fixes.
Of course SHIELD-HIT12A includes the features from SHIELD-HIT10A (which was never released):
  • Totally new (parallelizable) scoring system:
    • Arbitrary Mesh and Cylindrical scoring
    • Lots of detectors such as energy, fluence, dose-averaged LET, track-averaged LET, average velocity (beta), dose to medium (where medium can be changed if you want to calculate stopping power ratios) etc....
  • finally SHIELD-HIT10A is parallelizable
  • New random number generator, which gives a massive performance boost
  • New adjusted inelastic cross sections for carbon ions based on recent data
  • Fine tuning of the fermi-breakup parameters
  • SHIELD-HIT10A can be configured without accessing the source code anymore, so no programming knowledge required to use SHIELD-HIT10A.
  • SHIELD-HIT10A is installable
  • Runs on linux again, even when compiling with code optimizations, ok with GNU gfortran, Intel and Portland compilers.
  • Many bug fixes
Enjoy! And please drop me a line when you find bugs in the software and errors in the manual, they are there, but we hid them well. :o)


----

Friday, November 16, 2012

Medical physics papers on the arXiv: Some stats

Last year I made a post about the state of open access in medical physics and the use of arXiv.org to make medical physics papers freely available to everyone. Today I've decided to follow that up by taking a look at what is going on over at arXiv.org and sorting through some of their data.

The arXiv is "an openly accessible, moderated repository for scholarly articles in specific scientific disciplines". Beyond simply allowing all comers to read and download the articles they host, the arXiv also makes information about its vast collection easily available via a set of APIs. I decided to make use of the API to download meta-data (i.e. author, title, abstract, etc) for all articles in the medical physics category. Let's take a look!

First some raw numbers. As of mid-November 2012, the physics.med-ph category had (about) 980 articles. Those 980 articles where co-listed in 76 of the possible 126 other arXiv categories along with the medical physics category. In Figure 1 I've plotted the number of submissions by year (with a partial count for 2012). It's clear that the submission rate to physics.med-ph has greatly increased. On the plot I've fit a logistic growth curve (Gompertz), as I'm assuming that the submission number will saturate at some point. You can see faint exponential and linear fits as well. The logistic model predicts 174 submissions for 2012, but 140-145 seems more likely this year.


Figure 1. Submissions per year to the physics.med-ph category on arXiv.org.

Another item of interest is how the medical physics category fits into arXiv. If you've browsed physics.med-ph before, you know that it contains a broader range of topics than the popular "medical physics" journals, such as Physics in Medicine and Biology or Medical Physics. As mentioned above, many of the 980 articles were listed in multiple categories (663 to be exact). Figure 2 shows the most popular co-categories for articles in physics.med-ph. As might be expected, biophysics (physics.bio-ph) was the most popular co-category, along with topics that seem well aligned, such as instrumentation and detectors (physics.ins-det), organs and tissues (q-bio.TO), and computational physics (physics.comp-ph). But less obvious categories were also co-submitted as well, such as chaotic dynamics (nlin.CD).

Figure 2. "Co-categories" of papers submitted to physics.med-ph.
To try to get a better idea of how these categories interplay with one another, I made some simple network graph visualizations. Figures 3 and 4 show the connections between the co-categories. All of the papers are clearly in physics.med-ph and all other categories are linked to that. The other lines in the network plots represent when a paper was simultaneously in more than two categories (e.g. medical physics, biophysics, and physics - data analysis).

Figure 3. Network graph of categories for papers submitted to physics.med-ph. Click for larger version.
Figure 4. Network graph of categories for papers submitted to physics.med-ph. Click to view larger version with category labels on the nodes.
In Figure 4 the region near the center of the graph are the categories that are the most likely to be co-listed with other categories. As you might expect, the categories with a dense set of lines connecting them tend to also be the most frequently occurring categories, as seen in Figure 2. This is more easily seen in the larger version of Figure 4 with category names. (click the above figure).

As you can see the arXiv physics.med-ph category as a wide ranging and growing category for open access articles related to medical physics. It will be interesting to see how it fits in with the wider trends of funder mandates for open access and the general growing acceptance and demand for open access in out community.

N.B. This arXiv meta-data is relatively easily pulled down and processed with Python tools using the arXiv API, going from XML to JSON to your computer screen at home!

Friday, January 14, 2011

Open access, medical physics, and arXiv.org

If you read research papers, chances are you’ve heard the term open access. In this post I’m going to talk about what open access is, the state of open access in medical physics, and what medical physicists can do if they want to make their work open access using sites such as arXiv.org. The quick summary is: the primary obstacle to open access in medical physics is adoption by authors. Most journals are already on-board in important ways. If you want to make your medical physics publications open access, you probably can and I encourage you to do so.

According to our friends at Wikipedia, open access is “unrestricted online access to articles published in scholarly journals”. Open access is generally placed into two categories: “Green” open access and “Gold” open access. Green access is defined as author “self-archiving”, when the author places a copy of a paper on their own site or on an e-print server. Gold access is free access provided directly by journals.

No-fee access has many benefits for researchers. For medical physics, these benefits are potentially greater than for other fields, due to the fact that medical physicists are found in a wide variety of settings with varying levels of paid journal access (i.e. universities, community hospitals, small clinics, etc). Even being located at a large university with a large medical center, I have personally run into access barriers. For example, I can only access Medical Physics with my personal subscription; for a time the library subscribed to the Red Journal, but not the Green Journal; the university has no love for Radiation Protection Dosimetry whatsoever. In the current economic climate I’m not optimistic that institutional subscriptions will be on the increase. Ultimately, open access offers availability of information to all regardless of institutional affiliation or budget. (Also, I hate messing with proxies... :) )

While open access is strongly established in some disciplines, particularly physics, computer science, math, and earth science, medical physics seems to have lagged behind the curve greatly, especially in self-archiving.

“The availability of gold and green OA copies by scientific discipline. The disciplines are shown by the gold ratio in descending order, rather than in alphabetical order.” CCA 3.0. Björk B-C, Welling P, Laakso M, Majlender P, Hedlund T, Gudnason G. doi:10.1371/journal.pone.0011273

The above plot from Björk et al. shows the percentage of publications that are made open access in different disciplines. In some sub-disciples of physics, such as high energy physics, the rate of self-archiving is up to 100%. For reasons unknown to me, medical physicists have not embraced open access, despite the supportive polices of medical physics journals (see lists below). I suspect that medical physicists are largely ignorant of the journals’ policies. If medical physicists want to provide open access to their work, they have options to both self-archive (green) or publish in open access journals directly (gold).

arXiv.org
In 1991, high energy physicists began self-archiving their publications on a site called the arXiv (that X is supposed to be like a Greek “chi”). Since then, the arXiv has expanded to cover all of physics, as well as other fields, such as mathematics and computer science. As the leader in physics self-archiving, the arXiv is a logical destination for medical physicists to post their papers. In fact, the arXiv has a medical physics category. Currently, the medical physics category of the arXiv has very low activity relative to the number of medical physics articles published that are eligible to be posted. (I plan to investigate the posting rates in a future blog post.) While the activity is low, it is encouraging to see prominent medical physics researchers, such as Steve Jiang (UCSD) and Thomas Bortfeld (MGH/Harvard), posting articles. (Thanks!) In fact, one tiny area of medical physics that seems to be very well covered on the arXiv is GPU based calculations in medical physics. That’s probably due to Jiang’s group leading the way in posting their publications.

Medical journals
While medical physics journals all allow self-archiving to servers such as arXiv.org, medical journals related to medical physics seem to be much less enthusiastic about open access (see the list for details). The Elsevier journals allow pre-prints and self-hosted archiving, but the main radiology journals have open access “hostile” policies. The one thing that has seemed to crack journals such as those from RSNA is government mandates. One example is the recent rule requiring NIH funded research publications to be made available as open access on PubMed Central within 12 months of initial publication. This rule has had a wide ranging effect on journals and led to much discussion. Funding agencies in other countries have instituted similar rules.

What does this all mean for you?
  1. If you’ve published in medical physics journals, you can probably make your work open access right now by posting your articles to arXiv.org.
  2. If you are planning to submit an article to a journal, you should read the journal’s copyright policy before submitting and before posting a pre-print (or post-print). Some journals have very strange policies, unfortunately, and this has to be taken into account when submitting for publication.
I encourage authors to strongly consider making their work open access, either by self-archiving to the arXiv or publishing in one of the gold access journals. Ultimately, the arXiv is just an example of an e-print repository, but it seems to be the best choice for now. If, for example, a dedicated medical physics repository were created and critical mass were achieved, the papers on the arXiv could be stored there as well. I haven’t discussed the concerns some people have with open access (see the Wikipedia entry). If there is interest, I might talk about that in another post.

Journal policies
Below I will list the current (Jan. 2011) policies of the journals (as far as I can tell, UAYOR, YMMV, IANAL, etc). You can find out more information about the open access policies of these journals and others by using the SHERPA/RoMEO tool.

The state of open access in medical physics journals:
The state of open access in medical journals related to medical physics: